

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)

Department of AERONAUTICAL ENGINEERING

(R20A2112)

AIRCRAFT STABILITY AND CONTROL

COURSE COVERAGE SUMMARY

Prepared by: D.SMITHA Associate Professor Department of ANE B.Tech – ANE R-20

nit No	Title of the Unit	Topics of the Unit	Name of The Text Book	Chapter No	Page No
		Degree of Freedom of a system -Static and dynamic stability - Purpose of controls - Inherently and marginally stable airplanes	Airplane performance stability & control by courtland D.Perkins ,Robert E .Hage John wiley & sons	5	213-229
UNIT – I	Stability, Control Requirements &Static Longitudinal Stability and Control	Stick Fixed Basic equilibrium equation-stability criterion, contribution of wing, tail, fuselagethe most aft center of gravity	Airplane performance stability & control by courtland D.Perkins,Robert E .Hage John wiley & sons	5	219-229
		Power effects-elevator power, stick fixed neutral point-stick free stability-Hinge moment coefficient-stick free neutral points-maneuvers-stick force Gradients stick force per'g'-Aerodynamic Balancing.	Airplane performance stability & control by courtland D.Perkins,Robert E .Hage John wiley & sons	5	230-292
UNIT – II	Aircraft Equations of motion	Aircraft equations of motion (EOM), Aircraft position & orientation, stability-frame & body frame, Eulers equations, small disturbance	Yechout .T.R Introduction to Aircraft Flight Mechanics ,AIAA education series 2003,	4	145-164
	Perturbed Motion- Linearized, Decoupled Equations	Theory and Linearization of EOM, longitudinal and Decoupling in to lateral-directional motions- conditions for validity- role of symmetry	Yechout .T.R Introduction to Aircraft Flight Mechanics ,AIAA education series 2003,	4	239-285
		Lateral and directional stability-definition, static directional	Airplane performance stability & control	8	315-338

B.Tech – ANE R-20

UNIT – III	Lateral ,Directional& Dynamic Stability- Response To Control	stability rudder fixed , directional control, stick – free directional stability, dihedral effect and lateral control estimation of airplane dihedral effect, lateral control introduction ,estimation of lateral control power, Adverse yaw , aileron control forces Solutions to the stability quartic of the linearized equations of motion,	by courtland D.Perkins,Robert E.Hage John wiley & sons Airplane performance stability & control by courtland D.Perkins,Robert E.Hage John wiley & sons Flightpstability at Aptornatical Control stablishore, Rottrol by courtland.	by id	341-370
		the principal mode- phugoid, short period, Dutch roll and spiral modes-further approximations, restricted degrees of motion – solutions, response to controls, auto rotation and spin.	D.PatekMs, RobertHi E. Hag 200 In wiley & sons	10,11	374-460
UNIT – IV	Control System Modeling and Feedback Control	Basic components of control system, open loop system, closed loop system, Types. Reduction of block diagrams - rules and conventions Stability analysis-Routh Hurwitz,Bode plot, Polar plot, - determination of gain margin and phase margin	Flight Stability and Automatic Control by Nelson, R. C., 2nd Edition., Tata Mc Graw Hill, 2007	7	235-251
			Flight Stability and Automatic	8	313-319

B.Tech – ANE R-20

		Design of Stability			
		Augmentation			
	Design of Aircraft	System (SAS) using			
	Controller,	displacement & rate			
	Stability and	feed-back, Control			
	Control	augmentation system	Control by		
UNIT - V	Augmentation &		Nelson, R. C., 2nd		
	Auto Pilots	Full authority fly-by-	Edition., Tata Mc		
		wire control, need for	Graw Hill, 2007		
		automatic control. Auto			
		pilots- purpose,		8	313-319
		functioning,			
		displacement auto pilot,			
		pitch, yaw, bank,			
		altitude and velocity			
		hold auto pilot.			